Book review: Foraging with a prefrontal cortex makes all the difference
نویسندگان
چکیده
My cat is learning to catch squirrels in the back garden. It’s a painfully slow process. He seems to be trying every available technique, improving step by step. He’s tried sitting near the house and charging down the garden when a squirrel appeared, only for the squirrel to spot him and dash off. He’s tried assaulting the squirrel when it came down the tree, only to find out that squirrels climb faster than cats. He doesn’t seem to have an overview of the situation, grasping that his best strategy is to hide near the back fence, the only place where he can sneak up on the squirrel and cut off its escape route. Why isn’t he capable of that seemingly simple strategic inference? A new book by Passingham andWise (2012) provides a possible answer: because he doesn’t have the large, primate prefrontal cortex (PFC). Passingham and Wise (2012) set out to understand the organization and function of the primate PFC by combining evolutionary and ecological perspectives. Large parts of PFC, and specifically those with a granular cortical layer, are a primate invention. The authors argue that the development of these areas reflects the changes in foraging niches encountered during the evolution of the primate order. There is a large body of work relating aspects of brain evolution to specific ecological variables, most notably foraging habits (Clutton-Brock and Harvey, 1980) and social organization (Dunbar, 1998). However, these studies have mostly focused on the relative size of the entire brain or neocortex. In contrast, work dealing with more detailed brain anatomy has tended to focus less on the evolutionary context. The unique contribution of this book is that it combines the two approaches without compromises, focusing on a detailed reconstruction of the ecological challenges encountered by the primate brain and the anatomical information that provides avenues to understanding how these challenges have been met.
منابع مشابه
The effect of Aerobic Training on Serotonin and Tryptophan Hydroxylase of Prefrontal Cortex in type 2 Diabetic Rats
Background & Aims: Type 2 diabetes (T2D) is a self-management disease and depression is a common problem related to it. One of the causes of depression is serotonin (5-HT) depleted. The enzyme tryptophan hydroxylase (TPH) is known as limiting enzyme in the production of 5-HT in the brain. Aerobic exercise also has proven benefits in treating and reducing the incidence of chronic diseases such a...
متن کاملP38: Neuroanatomy of Post Traumatic Stress Disorder
Posttraumatic stress disorder (PTSD) is a disorder of emotional and mental stress occurring as an outcome of injury or severe emotional shock. Several Neuroimaging studies in humans have shown the functions and relationship between the anatomical changes of brain and PTSD. The three major areas of the brain are affected by PTSD .These three areas are the amygdala, hippocampus and prefrontal cor...
متن کاملEffect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کاملتأثیر تحریک مکرر مغناطیسی فراقشری با فرکانس بالا در کاهش فعالیت سیستم فعال ساز رفتاری افراد سوء مصرف کننده مت آمفتامین
Objective: The present study was an attempt to examine the effect of repetitive Transcranial magnetic stimulation (rTMS) on the reduction of Behavioral Activation System's activity in right and left dorsolateral prefrontal cortex among methamphetamine abusers. Method: In the present study, single subject and multiple baseline research designs were used and repeated measurements observations wer...
متن کاملCan ovariectomy and learning affect prefrontal cortex GABAAα1 receptor distribution in passive avoidance model in rats?
Introduction: The interaction between steroid hormones and neurotransmitters such as GABA has been proved. The regulation of muscimol binding to high-affinity GABAA receptors by estradiol and progesterone has been studied within distinct brain regions using in vitro quantitative autoradiography. There are few studies about the mechanism of the effect of steroid hormones on behaviors such as ...
متن کامل